Coating of strontium substituted hydroxyapatite on surface treated surgical grade stainless steel by electrodeposition for biomedical applications

نویسنده

  • D. Rajeswari
چکیده

Surgical grade stainless steel (316L SS) is one of the widely used implant material in orthopedic surgeries. But often the release of metal ions is evidenced from the implants and subsequently a second surgery is required to remove the implant material. One way to control the release of metal ions is to coat the implant material with a biocompatible material like hydroxyapatite (HAp). Strontium (Sr) salts were found to stimulate bone formation and inhibit bone resorption both in vitro and in vivo. The present work deals with the electrodeposition (ED) of Sr substituted hydroxyapatite (SrHAp) on the HNO3+H2SO4 treated 316L stainless steel (316L SS) at a current density of 2 mA/cm 2 for different durations like 15 min, 30 min and 45 min. The resultant coatings were characterized by Fourier Transform Infrared Spectroscopy (FT-IR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The SEM results revealed that the Sr-Hap coating obtained on the surface treated 316L SS by electrodeposition for 30 min consists of nanorods of dimension ranging from 50 to 75 nm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and characterization of nHA-PLA composite coating on stainless steel by dip-coating process for biomedical applications

316L stainless steel is the most commonly used metallic material in the manufacture of orthopedic implants. To achive better properties metal implants often coated with biocomposites. A sol–gel method was used for coating of Poly lactic acid (PLA)/Hydroxyapatite nanopowder (nHA) on stainless steel 316L substrate. The X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) wer...

متن کامل

Electrochemical and electrophoretic deposition of hydroxyapatite for orthopaedic applications

The basic calcium phosphate mineral, hydroxyapatite (HAP) (Ca10(PO4)6(OH)2)), is the prototype of one of the major constituents of bone and teeth. Thin layers of HAP were coated on the surface of type 316L stainless steel by electrophoretic deposition (EPD) from a 2.5% suspension in isopropyl alcohol, and this was followed by vacuum sintering at 800uC for 1 h. The development of HAP coatings wa...

متن کامل

Crystallization Kinetics of Hydroxyapatite Nano-films on Stainless Steel Through a Sol-Gel Process

       This article describes the preparation and analysis of nano hydroxyapatite (HA) films on stainless steel 316L through sol-gel technique. The process started with preparation of a nitrate and phosphate sol. After aging the sol for 24 h at room temperature a SS316 substrate was dip-coated and heat-treated at 350 to 450 °C for different times in air. The coating phase and structure on subs...

متن کامل

Electrodeposition of Nano Hydroxyapatite Coating on Biodegradable Mg-Zn Scaffold (TECHNICAL NOTE)

Magnesium has been recently recognized as a biodegradation metal for bone substitute application. In the present work, porous magnesium-zinc scaffolds were prepared by powder metallurgical process and nano hydroxyapatite (HAP) coating on the Mg-3Zn (wt.%) scaffold was prepared by pulse electrodeposition and alkali treatment processes to improve the corrosion resistance of scaffold. The results ...

متن کامل

Influence of substrate metal alloy type on the properties of hydroxyapatite coatings deposited using a novel ambient temperature deposition technique.

Hydroxyapatite (HA) coatings are applied widely to enhance the level of osteointegration onto orthopedic implants. Atmospheric plasma spray (APS) is typically used for the deposition of these coatings; however, HA crystalline changes regularly occur during this high-thermal process. This article reports on the evaluation of a novel low-temperature (<47°C) HA deposition technique, called CoBlast...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013